25,679 research outputs found

    Intrinsic coherence in assisted sub-state discrimination

    Full text link
    We study intrinsic coherence in the tripartite process to unambiguously discriminate two nonorthogonal states of a qubit, entangled with another one, and assisted by an auxiliary system. The optimal success probability is found to be benefited by initial intrinsic coherence, but no extra one is required. The transformations among different contributions of intrinsic coherence are necessary in this procedure, which increase with the overlap between the states to recognize. Such state discrimination is a key step of the probabilistic teleportation protocol. Entanglement of the quantum channel decreases the coherence characterizing the reliance on an ancilla.Comment: 6 pages with 4 figure

    Dynamical symmetries of the Klein-Gordon equation

    Full text link
    The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group corresponding to the Coulomb potential, and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally.Comment: 4

    A New Distributed Localization Method for Sensor Networks

    Full text link
    This paper studies the problem of determining the sensor locations in a large sensor network using relative distance (range) measurements only. Our work follows from a seminal paper by Khan et al. [1] where a distributed algorithm, known as DILOC, for sensor localization is given using the barycentric coordinate. A main limitation of the DILOC algorithm is that all sensor nodes must be inside the convex hull of the anchor nodes. In this paper, we consider a general sensor network without the convex hull assumption, which incurs challenges in determining the sign pattern of the barycentric coordinate. A criterion is developed to address this issue based on available distance measurements. Also, a new distributed algorithm is proposed to guarantee the asymptotic localization of all localizable sensor nodes

    Assisted optimal state discrimination without entanglement

    Full text link
    A fundamental problem in quantum information is to explore the roles of different quantum correlations in a quantum information procedure. Recent work [Phys. Rev. Lett., 107 (2011) 080401] shows that the protocol for assisted optimal state discrimination (AOSD) may be implemented successfully without entanglement, but with another correlation, quantum dissonance. However, both the original work and the extension to discrimination of dd states [Phys. Rev. A, 85 (2012) 022328] have only proved that entanglement can be absent in the case with equal a \emph{priori} probabilities. By improving the protocol in [Sci. Rep., 3 (2013) 2134], we investigate this topic in a simple case to discriminate three nonorthogonal states of a qutrit, with positive real overlaps. In our procedure, the entanglement between the qutrit and an auxiliary qubit is found to be completely unnecessary. This result shows that the quantum dissonance may play as a key role in optimal state discrimination assisted by a qubit for more general cases.Comment: 6 pages, 3 figures. Accepted by EPL. We extended the protocol for assisted optimal state discrimination to the case with positive real overlaps, and presented a proof for the absence of entanglemen
    • …
    corecore